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Constrained Mechanics and Va_ational Problems

A BRIEF SURVEY OF CONSTRAINED MECHANICS AND

VARIATIONAL PROBLEMS IN TERMS OF DIFFERENTIAL

003
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Robert Hermann

Ever since my graduate student days, I have been impressed and

influenced by the elegance and systematizaLion of Mechanics and

Vax_ational Calculus contained in FAie Cartan's boor "Lecons sur les

Invariants Integraux". In the period 1959-69, I expended considerable

effort in the development of Cartan's point of view in many books and

articles. In rka's paper (which wilI appear as a Chapter in "Interdisciplinay

Mathematics", v. 30), I will give a quick development of some of the

material in my boors "Differential Geometry and the Calculus of

Variations" and "Geometry, Physics and Systems".

Another purpose in developing this geometric form of the Equations

of)Mechanics in this Volume is that it fits in with my strategy of

investigating mechancis with 'singular' features, such as Delta Functions,

Discontinuities, Shocks, etc. As I wiI1 show in Volume 30 the C-O-R

constructions of Generalized Functions enable one to define 'differential

forms with generalized coefficients, thus preparing the ground for the

material in this Chapter serving as foundation for Mechanics with Singular

•Data, the Theory of Splines on nonlinear manifolds, etc. Further, when

combined with the Computational Methods under development at the AI

Lab of MIT by Gerry Sussman and co-workers this material will be usefuI

in the development of Air Traffic Control methodology.

Another gaol of my work is to develop a general structure for ODE

systems, to be used in both 'smooth' and 'generah'zed' (in the sense of

Colombeau, Oberguggenberger and Rosinger) Mechanics, Control and

Numencai Analysis. Since Martin, Crouch have shown that, Jm_the linear

case, Splines may be constructed from linear control system so attenn'on

will, in the future, focus on the Spllnes associated with Generah'zed Inpouts

to Nonlinear Control Systems. Work of Sastry and Montgomery indicates

that imporant examples of such systems _zll be the Left-Invariant Control

Systems on Lie Groups, which have been much smc_'ed in recent years by
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researchers interested in Integrable Systems, Robotics, and Aircraft

Guidance,

1. Introduction.

There has been considerable interest recently in constrained

mechanics and variational problems. This is in part due to Applied

interests (such as 'non-holonomic mechanics in robotics') and in other part

due to the fact that several schools of 'pure' mathematics have found that

this classical subject is of importance for what they are trying to do. I

have made various attempts [2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 27] at

developing these subjects since my Lincoln lab days of the late 1950's. In

this Chapter, I will sketch a Unified point of view, using Cartan's approach

with differential forms. This has the advantage from the C-O-R viewpoint

being developed in this Volume that the extension from 'smooth' to

'generalized' data is very systematic and algebraic. (I will only deal with

the 'smooth' point of view in this Chapter; I will develop the 'generalized

function' material at a later point.) The material presented briefly here

about Variational Calculus and Constrained Mechanics can be found in

more detail in my boooks, "Differential Geometry and the Calculus of

Variations" "Lie Algebras and Quantum Mechanics", and "Geometry, Physics

and Systems".

Here is the basic set-up. Suppose given the following data:

A smooth paracompact manifold X

T(X) is its tangent vector bundle

A set {0, col, ..., corn} of smooth 1-forms on X.

0 is called the action form, {_ol, ..., _} are the constraint forms.

(1.1)

(1.2)

(1.3)

_ Let us suppose given a curve in X:
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x= {t--> x(t)_X: a _t sb}}: [a, b]--> X (1.4)

dx/dt = v = [t -> dx/dt(t) _ T(X): a _ t • b}]: [a, b] --> T(X) (1.S)

is its tangent vector or velocity curve.

(In this Chapter, I suppose all such curves are a/so smooth.)

Definition. The foUowing real number associated to the curve 1.3 is called

the action:

a(X) = I[a, b]0( [dx/dt] (t))dt (1.6)

The following field of l-covectors along the curve 1.4 is called the force:

{t--> [dx/dt](t))J d0} (1.7)

1.6 and 1.7 are the basic data for both 'mechanics' and 'variational

calculus'.

Now, let us deal with 'constraints':

Definition. The curve 1.4 satisfies the constraints associated with

the 1-forms [ml, ..., ram} iff. it satisfies the following set of Pfaffian

differential equations:

0 = ojl(dx/dt) = ... = mm(dx/dt) (1.8)

I will show how the basic Equations of Mechanics can be described

very compactly and elegandy in terms of this data.

2. The First Variation

curves of do.
formula and the Cauchy characteristic "
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Keep the data of Section 1. Let us suppose that only the 'action' form

0 is give, without any constraints. Let x be a smooth curve in X, given as in

1.4. Suppose that 's', 0 ls s _ 1, is a deformation parameter and that

{s -> xs: [a, b] --> X} is a smooth one-parameter family of curves in X,

reducing to the given curve x at 's=0'. For t E[a, b], set:

v(t) = tangent vector to the curve {s --> xs(t)} at 't= o'

The field {t --> v(t) eXx(t)} of tangent vectors is called an infinitesimal

deformation of the curve _ Then:

d(a(xs))/ds[ s=0 (2.1)

is called the First Variation of the action function function 1.6

along the curve x pointing in the direction of the vector field v.

Using the formula 1.6 for the Action, the Cartan Family Identity:

'V(0) = vJ do + d(VJ 0)': between a differential form and a vector field, and

Integration-By-Parts, we have the First Variation Formula:

d(a(xs))/ds[s=O=f[a, bl-[ctx/dtJde](v(t))dt + e(v)(b)- e(v)(a) (2.2)

Remark. This formula is a variant of a General Principle:

The Variational Derivative of the Action is the Force (2.3)

It also suggests the following:

Definition. A curve {x: t --> x(t)} is called a Cauchy characteristic
curve for the 2-form dO iff:

[cLx/dt] J do = O. (2;4)

If x satisfies 2.4, then the First Variation 2.2 vanishes for any infinitesimal

deformation v which satisifies the following conditions:
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0(v)(b) = o(v)(a) = 0 (2.5)

Conditions 2.5 are called Transversality Conditions.

At this point, 'symplectic structures and foliations', 'Hamilton's and

Lagrange's Equations' (for special choices of 0), etc. enter in a very natural

way. See [2, 4, 6, 8, 11, 20, 27, 29].

3. The differential equations of constrained extrema and the

augmented action form.

Let us now suppose that {0, og, ..., ore} is given, as in 1.3. Introduce

Lagrange Multiplier Variables:

{_I,..., Xm} (3.1)

Consider them as Cartesian coordinates of a copy of R m. On X x Rm,

introduce the following augmented 1-form:

Then,

Oaug -- 0 + Xl¢01 + ... + )_mO m

dOaug = dO + dX1Ao_ 1 + ... + dXmAm TM +

klda) 1 + ... + kmdO "n

(3.2)

(3.3)

Definition. A curve {t --> x(t)} in X is an extremal of the constrained

variational problem associated with the differential form data 1.3 if and

only if there is a curve in X x Rm of the form

{t -> (x(t), _.l(t), ..., kin(t)} which is a Cauchy characteristic curve of d0aug.

In other words, the 'extremas' are the images under the Cartesian

projection map: {X x R m -> X} of the Cauchy characteristic curves of d0aug.

Theorem 3.1. A curve {t --> (x(t), _.l(t), ..., _,m(t)] is a Cauchy

characteristic curve for the 2-form 'd0aug' if and only if the following

conditions are satisfied:

0 = ool(dx/dt) = ... = (On(dx/dt) (3.4)
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dx/dtJ de -- - kl (t)[dx/dt] J dml ..... km(t)[dx/dt] J dtom

- [dZl(t)/dt] _I _..._ [dkm(t)/dt] tom

(3.5)

Proof. Let v be a tangent vector to the manifold X x Rm. Then:

vJd0aug--vJ (d0 +dkl^¢ol +... + dkmA_m+kld¢ol +... + kmdtOm)

= vJ do + v(;q)o_l + ... + v(_.l)Ol - m1(v)d_l - ... - tom(v)dXm

+ k1[vJ dtol] + ... + km[VJ darm]

(3.6)

3.6 involves one-forms on X x Rm. Notice that the only terms on the right

hand side of 3.6 which involves {d_,l, ... dXm} are the terms

'- tol(v)clXl - ... - om(v)d_'. If the tangent vector v is to be Cauchy

characteristic these forms must vanish. This leads to the condition 3.4. The

conditions 3.5 now follow from inserting 3.4 into the Cauchy characteristic

conditions 'v j do aug = 0' and using 3.6.

q.e.d.

Remark. This result expands the treatment to the 'constrained' case that

Caftan gave for the 'unconstrained' variational problem in "Lecons sur les

Invariants Integraux". See [2] for the connection with the traditional

'Lagrange Variational Problem' as expounded in Caratheodory's book and

for the definition and properties of 'symplectic foliations' and further
detail.

4. The differential equations of constrained mechanics.

There is considerable confusion in the Literature beween the

Lagrange Variational Problem (or 'constrained extrema') and 'constrained'

(and 'non-holonomic') mechanics'. I will now describe the l_tt_:_ Suppose

again given the following data:

A smooth paracompact manifold X (4.1)
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T(X) is its tangent vector bundle

A set {0, oj1, ..., tom} of smooth i-forms on X.

(4.2)

(4.3)

Definition. Let {x: t --> x(t)} be a curve in X. It is said to be a trajectory

of the constrained mechanical system associated with the data

4.1-4.3 iff. the following conditions are satisfied:

0 -- o.)l(dx/dt) = ... = tom(dx/dt) (4.4)

There is a curve in X x Rm of the form

{t --> (x(t), _l(t), ..., _m(t)} such that:

[dx/dt] J do = ,l(t)tol + ... + _l(t) mm (4.5)

In other words, 4.4-4.5 define an ODE system whose solutions are curves in

X x Rm. The 'constrained mechanics trajectories' are the projections in X

under the Cartesian map projection {X x Rm -> X] of the solution curves of

the ODE system 4.4-4.5.

5. 'Holonomic' constraints. Equivalence of the Constrained

Extremal and Mechanics equations in the 'holonornic' case.

Suppose given the followingdata:

A smooth paracompact manifold X

A set {0, ,ol, ..., tom} of smooth 1-forms on X.

(5.1)

(5.2)

Indices 1 .:a, b, ... <m (5.3)

Definition. The constraint forms {toa} are said to be holonornic iff. there

is a matrix {_ab] of 1-forms such that:

d coa = _b o)ab A cob (5.4)
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Remark. Locally, condition 5.4 is equivalent to the following, more

'geometric', condition:

The Pfaffian System {toa = 0} is Frobenius Integrable (5.5)

Let us now combine conditions 5.4 and the Constrained Extremal

equations 3.5. The following equations result:

dx/dtJ dO =- _abka(t)[dx/dt] J (coab^ cob)-_a[dXa(t)/dt] coa (5.6)

Rewrite this as follows:

dx/dtJ do = - _abXa(t)[(o_ab(dx/dt ) _b) _ o_b(dx/dt ) o_ab

- _a[dka(t)/dt] _a

(5.7)

The second term on the right hand side of 5.7 vanishes as a consequence of

the Constraint Equations 4.4, resulting in the following:

[dx/dt]J do = - _abXa(t)[(o_ab(dx/dt)cob) - _a[dka(t)/dt] coa (5.7)

Theorem 5.1. Let 5.4 be satisfied and let the curve {t --> x(t)} be a

solution of the Constrained Extremal Equations. Then, {t -> x(t)} is also a

solution of the Constrained Mechanics Equations 4.4-4.5.

Proof. That functions {t --> _a(t)} exist satisfying 4.5 is evident from 5.7.

q.e.d.

Here is the converse:

Theorem 5.2. Let 5.4 be satisfiedand let the curve [t --> x(t)} be a

solution of the Constrained Mechanics Equations 4.4-4.5. Then, {t--> x(t)}

is also a solution of the Constrained Extremal Equations.
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Proof. We must show that the existence of functions {t --> xa(t)} satisfying

5.7 is a consequence of the existence of functions {t --> _a(t)} satisfying

4.4-4.5. Examining the right hand side of 5.7, we see that the {via(t)} can be

obtained by solving an ODE whose coefficients depend on the {xa(t)}.

q.e.d.

6. The constrained mechanics equations in a 'Hamiltonian' form.

So far, we have been working in the context of general manifold

theory. Let us specialize now to the situation which is close to the

'Hamiltonian' formalism in the traditional particle mechanics case.

Suppose given the foUowing data:

n is an integer

The foUowing range of indices:

1 _i,j, ... <n

X = R2n+l -_ R nx Rnx R

(6.1)

(6.2)

(6.3)

{qi, Pi, t} are Cartesian coordinates on X.

{(q, p, t) --> H(q, p, t)} is a smooth real-valued

function on X, called the Hamiltonian.

(6.4)

(6.5)

0 = _iPidq i - Hdt (6.6)

dH = _iHidq i + _iHidpi + Htdt,

where {Hi, H i, Ht} are the partial derivatives-Of-

the Hamiltonian function with respect to the

'canonical' coordinates 6.4.

(6.7)
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Theorem 6.1. dO = _]i(dq i- Hidt)A(dpi + Hidt) (6.8)

Proof. Follows from 6.7 and 6.6, by a direct compuation, which is left to te

reader.

Theorem 6.2. Let V be a smooth vector field on X. Then:

VJ dO = _i(V(q i)- HiV(t))(dpi + Hidt) - _i(V(pi) + HiV(t))(dq i- Hidt) (6.9)

In particular, if:

V(t) = 1

then:

V] dO = _i(V(q i) - Hi)(dpi + Hidt) - _]i(V(pi) + Hi)(dq i - Hidt)

(6.10)

(6.11)

Proof. Apply the operation 'V] ' to both sides of 6.8. 6.11 follows from

substituting 6.10 into 6.9.

Theorem 6.3. Keep the hyopotheses of Theorem 6.2 and condition 6.10.

Suppose further that:

VJ dO = _(t)_iaidq i (6.12)

where {ai) are smooth functions on X and {t --> _(t)} is a real-valued

function of 't'. Then, the following relations must be satisfied:

V(qi) = H i (6.13)

V(pi) + Hi = _(t)ai

_i(V(pi) + Hi)H i = 0

(6.14)

(6.15.
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Proof. 6.13-.15 resultsfrom combining 6.11 and 6.12,and comparing

coefficients of independent coordinate differentials on both sides of the

resulting differential form relation.

Theorem 6.4. LeG V be the vector fieldon X defined by 6.10 and 6.12.

Then, the orbit curves {t-> (q(t),p(t),t)}ofV are solutionsof the

following ODE's:

dqi/dt = OH/api (6.16)

dpi/dt = - aH/aqi + _(t)ai (6.17)

_iai(p(t), q(t), t) [dqi/dt] = 0 (6.18)

Proof. Follows from 6.13-6.15.

Remark. Equations 6.16-6.18 form an ODE system of (2n+l) equations for

the (2n+1) 'unknowns: {pi(t), qi(t), _t(t)}. They are the Hamiltonian

version of the Lagrange Equations of Motion for Constrained

Mechanics. (In this case, there is only one 'constraint, namely 6.18. The

case of more constraints can be handled similiarly.)

7. Final remarks about generalizations.

The material in Section 6 suggests a Generalization of material about

Symplectic Manifolds, Geometric O_uan_ization, etc. from the traditional case

abstracted from Particle Mechanics (as in the work of Dirac, van Hove,

Segal, Kostant, Souriau, etc) to a abstract sitaution paralleling the material

developed in Section 6.

I will briefly sketch such generalizations. Instead of tlae-Vi_2 n*l'

situation of Section 6, suppose that we are on a manifold X, with the
following relation:

do = _ - dHAdt (7.1)
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'H' and 't'are smooth functions on X. 0 and f2are, respectively, a i- and 2-

form on X and _ is closed. Suppose that VH is a vector field on X such that:

VHJ dO = _o (7.2)

VH(t) = i, (7.3)

where 'o' is a 1-form defining the constraints and '_' is a function on X.

7.1=7.3 imply:

VHJ f_- V(H)dt + dH = g_o (7.4)

This relation generalizes the duality relation between 'infinitesimal

symmetries' and 'conserved functions' that plays the basic role in the

'geometric quamtization' theory of unconstrained conservative mechanical

systems. I plan to study this Geometric Structure further in a later

Volume.
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